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An examination is made of different variants of the determina-
tion of thermal diffusivity when boundary conditions fixed in
time are imposed. It is shown that for these cases the thermal
diffusivity may be determined by a single method.

Under mixed boundary conditions, by which we un-
derstand a combination of boundary conditions of the
first and second or of the second and third kinds, the
final objective in the majority of cases is to determine
the thermal diffusivity by an absolute or a compara-
tively stationary method, Use of an unsteady thermal
state preceding a steady state permits us, even in this
case, to introduce at least two constants, such as the
cooling rate [1], knowledge of which allows us always
to determine the thermal diffusivity. Before consider-
ing these quantities, we shall turn to the case when
boundary conditions of the first kind prevail on the
surface of a specimen,

The theoretical basis for determination of thermal
diffusivity may be any solution [2] with boundary con-
ditions of the first or of the third kind.

We shall consider one of the possible variants of
methods for determining the thermal diffusivity of sol-
ids in the form of plates or discs. The expression for
the relative dimensionless temperature at the center
of a plate whose surface is maintained at a constant
temperature has the following form [2]:
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When Fo = 0.2, the temperature field of avplate is
described by the first term of the series (1), "to a high
degree of accuracy. Therefore
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It follows from (2) that
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Relation (3) differs from the corresponding relation in
regular regime theory only as regards the coefficient,
The coefficient appearing in (3) could be called the
shape coefficient of an infinite plate. However, in our
opinion; this term is not entirely fortunate, In fact, in
the case, for example, of a multi-layer plate, the
shape and the nature of the variation of the tempera-
ture field are retained, evidently, as before, but the
coefficient of (3) will be different.

It is not difficult to show that the value of the cool-
ing rate in (3) may be replaced in prineciple by another
quantity, which, like the first, is a constant. In fact,
at the stage of an established (regular)thermal process
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The meaning of the substitution becomes clear when
an analysis is made of solutions with combined bound-
ary conditions,

We shall examine the solution of the problem of
heating of one surface of an infinite plate by a constant
heat flux under the condition that the other surface is
maintained at constant temperature [3]:
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When Fo > 0.3

g, — IR 5 4R e
6 =~ — — 2 e (— yiFo). (4)
It follows from (4) that
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It is clear from (5) that the new quantity (it could
be called the rate of change of heating rate) is con-
stant even under combined boundary conditions. K
should be stressed that the fact that this quantity is
constant not only for the special examples examined
but in general for all cases for which the end result of
the development of the temperature field is a steady
thermal state.

Determination of the thermal conductivity on the ba-
sis of (6) assumes the need to know the nature of the
variation of the temperature field t = f(7) and requires
subsequent processing of this quantity in order to con-
struct the graph In b = ¢(7) (theoretically a straight
line), However, determination of the rate of heating
is associated with substantial errors. For this reason
it is preferable to use another variant for the calcula-
tion of thermal diffusivity, which, other conditions
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being equal, leads to smaller errors than the calcula-
tion on the basis of (6). In fact, the first term on the
right side of (4) is none other than te(max) — to= @c(max) =
= qR/A, i.e., itis the maximum temperature differ-
ence which is established between the center and the
base of the plate in the steady state. Therefore
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appearing in (8), possesses all the properties of the
cooling rate. '

Similar computational formulas may be obtained
also for samples of other geometrical shapes (solid,
hollow cylinder, and sphere) with the one difference
that the coefficients in (8) will be determined by the
roots of the corresponding characteristic equations.

To verify the calculation relations (3), (6), and (8),
a simple experimental scheme was used. Test speci-
mens were formed in the shape of plane-parallel square
plates or disks. To create the required boundary con-
ditions of the first kind we used a clamp consisting in
the main of two hollow plane-parallel ¢ylindrical cop-
per "coolers™ with carefully ground surfaces. The
coolers were joined together by rubber hoses through
which water was passed. One junetion of a differential
thermocouple was embedded in the surface of one of
the blocks beforehand, the second junction being in-
stalled at the center of the plate before the test. The
temperature difference between the specimen, initially
at room temperature, and the "coolers®, through which
water was flowing, was recorded with a galvanometer,
When the maximum steady temperature difference was
established, the specimen was placed in the space be~
tween the "coolers®, and was squeezed tightly between
them, The variation of temperature with time was re-
corded in one case with a galvanometer and stop watch,
and in another case with a photo-electric recorder
type N 373-1. The treatment of the results obtained to
find the thermal conductivity on the basis of (3) was
carried out by the method usually applied in the regu-
lar regime theory. In doing this, in order to avoid the
need to construct a graph of (n®@=f (1), we used another
method, the essence of which was to record the time
interval during which the temperature difference chang-
ed by a specific fraction of its initial value, Since the
specimen is located initially inside the "coolers",
through which a coolant is passing, the temperature
difference between them is always known. For ex-
ample, let the time interval during which the tempera-
ture difference decreases from 1/2 to 1/4 of its initial
value be noted during the experiment; it then follows
from (3) that
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The data of {2] allow choice of just such an interval of
temperature change, in which regular thermal process
occurs. The combined boundary conditions are created
by locating a low-inertia plane-parallel heater at the
center of the plate (the plate is composite). The ex-
perimental layout is practically no different from that
described,

The test specimen is compressed in a clamp be-
tween plane "coolers™ through which, as in the first
case, water at constant temperature is passed. A con-
stant electrical power is supplied to the heater. From
the experiment we find the relation t = £(7) and ty, 4,
(in the steady state), From these data a graph of
Inttpgx — t) = ¢@(t) is constructed, which is a straight
line for an established thermal process (¥Fo > 0.3).
Knowledge of the slope of this line permits us to cal-
culate the thermal diffusivity from relation (8).

We investigated speecimens of plexiglass and of cer-
tain other materials. For plexiglass, which we chose
as a "standard™ material, the mean value of the ther-
mal diffusivity found from relations (3) and (8), was
m?/sec, which agreed with the available data in the
literature within 3—-6%. The maximum error in de-
termining the thermal diffusivity on the basis of (6)
was 10-12%,

We restricted ourselves in this case to a compari-
son of theresults obtained with results of other au-
thors [4], which in essence is only an indirect evalua-
tion of the accuracy of the techniques examined.

The error in determining thermophysical properties
by any method, as is known, resolves into two parts,
of which one part is determined by the error in mea-
suring the quantity entering into the calculation formu-
las. Evaluation of this part of the error is not difficult,
and the quantity may be reduced to a minimum by using
a more refined measurement technique, The greatest
difficulty is to evaluate that part of the total error
which is due to- deviation of the conditions of the ex-
periment from the required theoretical prerequisites.

Some of the agsumptions and calculations that we
made in estimating the second part of the error are
as follows. Relations (3) and (8) were obtained from
one-dimensional solutions. In order fo justify the va-
lidity of applying them to specimens of finite size, we
carried through calculations based on solutions of the
corresponding two-dimensional problems. These cal-

» culations provided a basis for reaching the conclusion
that if the ratio between the linear dimensions of the
plate is equal to or greater than 1/3, the nature of
the variation of the temperature field in the measure-
ment region (the center of the plate) agrees with the
corresponding values in the infinite plate to within

0.5%.
It is clear that these inferences will be valid only

for the case when the temperature difference between
the specimen and the surrounding medium is not too
large, »

The second appreciable and difficult to calculate
source of error is the additional thermal resistances
arising at the points of contact of the plate with the
plane "coolers". In view of the absence of any other
general criteria permitting us to estimate the error
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of this type, we took steps to reduce it by careful
treatment of the surface and by compressing the spec-
imen. It was assumed alsc that change in the thermo-
physical properties o, A, C for small temperature
drops does not iniroduce distortion into the nature of
variation of the temperature field, and, therefore,
avoids the need to introduce any correction coefficients
into the calculation formulas.

The method that we used to determine the thermal
diffusivity of solid materials, subject to boundary con-
ditions of the first kind, is simpler than the calorim-
eter method; moreover, the imposition of combined
boundary conditions allows a composite determination
of the thermophysical properties to be done, using a
combination of purely unsteady and steady thermal

states.
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